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� A critical review on deterioration models for predicting the remaining service life of bridges is presented.

� Examples are illustrated to develop bridge element deterioration models by deterministic, stochastic and ANN-based methods.

� Recommendations are made for future research in the area of bridge deterioration modeling.
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Bridge deterioration models are used for prioritization and maintenance of bridges. These

models can be broadly classified as deterministic and stochastic models. There are

mechanistic models (or physical models) as well as Artificial Intelligence (AI)-based

models, each of which can be stochastic or deterministic in nature. Even though there are

several existing deterioration models, state-based stochastic Markov chain-based model is

widely employed in bridge management programs. This paper presents a critical review of

different bridge deterioration models highlighting the advantages and limitations of each

model. The models are applied to some case studies of timber superstructure and concrete

bridge decks. Examples are illustrated for arriving at bridge deterioration models using

deterministic, stochastic and Artificial Neural Network (ANN)-based models based on

National Bridge Inventory (NBI) data. The first example is based on deterministic model

and the second on stochastic model. The deterministic model uses the NBI records for the

years 1992e2012, while the stochastic model uses the NBI records for one year (2011e2012).

The stochastic model is state-based Markov chain model developed using Transition

Probability Matrix (TPM) obtained by Percentage Prediction Method (PPM). The two dete-

rioration models (i.e., deterministic and stochastic models) are applied to timber highway

bridge superstructure using NBI condition data for bridges in Florida, Georgia, South Car-

olina and North Carolina. The illustrated examples show that the deterministic model

provides higher accuracy in the predicted condition value than the stochastic Markov

chain-based model. If the model is developed based on average of transition probabilities

considering the data for the period 1992 to 2012, the prediction accuracy of stochastic

model will improve. Proper data filtering of condition records aids in improving the ac-

curacy of the deterministic models. The third example illustrates the ANN-based deteri-

oration model for reinforced concrete bridge decks in Florida based on the NBI condition
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Table 1 e NBI condition rating (Federal

NBI scale Condition

9 Excellent New

8 Very good No

7 Good Som

6 Satisfactory Som

5 Fair Min

nee

4 Poor Adv

3 Serious Sec

com

2 Critical Adv

clo

1 Imminent failure Ma

bac

0 Failed Ou
data for the years 1992e2012. The training set accuracy and testing set accuracy in the ANN

model are found to be 91% and 88% respectively. The trained model is utilized to generate

missing condition data to fill the gaps due to irregular inspections of concrete bridges. This

paper also discusses scope for future research on bridge deterioration modeling.

© 2020 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bridges form a major part of U.S. infrastructure, which has a

total of 614,387 bridges. The structurally deficient bridges form

9.1% of the nation's bridge population (ASCE, 2017). Besides,

almost 40% of the bridges are over 50 years old, which is the

average design-life of a bridge. In order to prioritize and

maintain the bridges, it is essential to arrive at bridge

maintenance strategies based on deterioration models for

bridge elements. These models have been developed using

inspection records from National Bridge Inventory (NBI) for

the bridges in the United States. The NBI database includes

information on the: i) geometric and design parameters of

the bridge like span length, skew angle, deck width, material

type, superstructure design type and design load; ii)

operational conditions such as Average Daily Traffic (ADT),

age, and highway classification; and iii) structural condition

of bridges in the states' inventory. NBI specifies a condition

rating scale of 0e9 based on visual inspection, with 9 being

excellent condition, and 4 indicating poor condition. A

bridge qualifies as structurally deficient if the condition

rating is 4 or below for the bridge deck, superstructure or

substructure. Table 1 gives the descriptions of the condition

ratings for the bridge deck based on NBI. Visual inspections

are carried out either annually or biennially, and the

inspection records are used to assist the maintenance of

bridge inventory. The NBI records are used to develop bridge

deterioration models. The NBI records have certain

limitations such as: i) subjectivity of visual inspection

process; ii) unbalanced, noisy and large amounts of data
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scatter; and iii) condition data availability for only a small

window in time for many bridges. Winn (2011) analyzed

these aspects of NBI database for concrete highway bridge

decks in Michigan.

Typical condition ratings adopted across the world are

presented in Table 2. The information is adapted from

literature reported by Hearn et al. (2005), Jeong et al. (2017),

Liao et al. (2017), Masahiro and Takashi (2013), Xie et al.

(2014), and Yusuf and Hamid (2018).

Several researchers have attempted to improve the dete-

rioration modeling for prediction of remaining useful service

life of bridges. Imbsen et al. (1987) evaluated the strength of

reinforced concrete bridges by considering the degree of

deterioration in the structure, frequency of inspection,

preventive maintenance, and ultimate resistance evaluation.

A comprehensive Bridge Management System (BMS) for the

Indiana Department of Highways (IDOH) using the Markov

chain was developed by Jiang et al. (1988) and Jiang and

Sinha (1989). Frangopol (2002), Frangopol and Maute (2003),

Frangopol et al. (2004, 2010), and Barone and Frangopol

(2014) contributed to the field of reliability-based

deterioration prediction and lifetime maintenance cost

optimization of infrastructure. Agrawal et al. (2008, 2010)

presented the development of Markov chains and Weibull

distribution based approaches for the calculation of

deterioration rates of different bridge elements in New York

State Department of Transportation (NYS DOT) considering

the factors such as the material types, design types, etc.

Morcous et al. (2002a, b) demonstrated a “proof of concept”

application for modeling the deterioration of concrete bridge
n, 1995).
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Table 2 e Condition ratings in other countries.

Country Bridge condition rating

Denmark 0 to 5 condition rating plus inspector's recommendation on repair urgency

Finland 0 to 4 condition rating scale plus importance in load path, severity, urgency of repair, condition of the bridge element

France 1 to 3 condition rating scale. 2E indicates urgent need for specializedmaintenance, 3U indicates urgent need for repair,

and S indicates a threat to user safety and an urgent need for action

Germany 0 (good) to 4 (very poor) severity condition rating scale and each bridge component is assigned three ratings; one each

for structural damage, traffic safety, and bridge durability

Norway 1 to 4 severity rating scale plus a consequence code (impact on load capacity, traffic operations, maintenance cost or

environment)

South Africa Ratings in three categories: physical, functional and economic condition (related to extent of damage)

United Kingdom 1 to 5 severity rating plus A to E extent rating

Japan Maintenance urgency ratings: Aeno repairs needed, Beno immediate repairs needed, Cerepair needed, E1

eemergency action is necessary from the viewpoint of structural safety and stability, E2eemergency action is

necessary because of other factors, Merepairs needed in the course of the regular maintenance work, Sefurther

detailed investigations needed

China Five condition states: CS Iegood condition, whereas CS Veunacceptable condition

Malaysia 1 to 5 condition rating scale with 1eno damage found and no maintenance required as a result of inspection and 5

ebeing heavily and critically damaged, and possibly affecting the safety or traffic

South Korea A to E rating scale with Aeperfect condition to Eefailure condition
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decks using Case-Based Reasoning (CBR). Morcous et al. (2003)

proposed an approach to provide an effective decision support

tool to identify the categories that best define the

environmental and operational conditions specific to bridge

structures with an ability to correlate the parameters such

as highway class, region, ADT, and percentage of truck

traffic. Morcous et al. (2010) presented an integrated system

for bridge management using probabilistic and mechanistic

deterioration models for bridge decks. Morcous (2011)

developed deterioration models for Nebraska bridges using

Markov chain-based method. Bu et al. (2011, 2012, 2014)

proposed bridge deterioration modeling based on Backward

Prediction Model (BPM) and Markovian-based deterioration

procedure. Cavalline et al. (2015) and Goyal et al. (2017)

developed proportional hazards regression-based

methodology to identify the most critical factors affecting

deterioration. Tolliver and Lu (2012) and Lu et al. (2016)

analyzed bridge deterioration rates using multivariable

regression analysis. Kosgodagan (2017), Rafiq et al. (2015),

Straub (2009), Tabatabaee and Ziyadi (2013), Torre et al.

(2017), and Wang et al. (2012) proposed a methodology to

develop a deterioration model using Bayesian network

which aids in updating the model as new data becomes

available. She et al. (1999) described a framework for

developing a Geographical Information System (GIS)-based

Bridge Management System (BMS). Chun et al. (2010)

proposed a bridge deterioration prediction method using

Markov chain-based model, whose transition probabilities

are expressed as a function of environmental conditions

obtained from GIS. Though BMS have been developed and

improved by many engineers and researchers, there are still

challenges and scope for improvements in deterioration

modeling. Present BMS are based on state-based Markov

chain models. These models assume state-independence

(i.e., the future condition state of the bridge is based only on

the current state). The probability of the bridge condition

changing from one state to another is determined using

expert judgment and empirical observations, which are

represented in a matrix form. This matrix is called the
Transition Probability Matrix (TPM). Based on the current

condition or initial condition state of a bridge element, the

future condition can be predicted through the multiplication

of the current condition vector and the TPM. Current Markov

chain models in BMS assume time homogeneity (i.e., the

transition probabilities remain the same over the service

life). In addition, one of the main drawbacks is that current

BMS are based on qualitative deterioration modeling in

terms of condition states which are not essentially related to

physical quantitative parameters such as deformations,

stresses and cracking. In this paper, a critical literature

review on bridge deterioration models is presented with

illustrative examples, and scope for future research on

deterioration modeling is discussed.
2. Bridge deterioration models

Reinforced and prestressed concrete and timber bridges

together amount to about 67% of the total bridge inventory

based on 2017 NBI records. The total number of bridges in the

United States based on NBI 2017 data is shown in Fig. 1.

During the service life, concrete bridges are subjected to

aggressive influences viz. variable loadings and vibrations,

extreme weather conditions, presence of chlorides in de-icing

salts and freeze and thaw cycles, plus air borne chlorides in

marine environments. These factors lead to concrete bridge

deterioration, predominantly due to reinforcement steel

corrosion. Several authors have developed deterioration

models for concrete bridge elements, which are discussed in

the following sub-sections. However, there are only limited

studies available on the deterioration prediction of timber

bridge elements. Ranjith et al. (2011) developed stochastic

Markov chain-based model for the prediction of timber

bridge elements' condition using data obtained from the

Roads Corporation of Victoria in Australia. The authors have

applied Percentage Prediction Method (PPM), regression-

based optimization method, and nonlinear optimization

technique to predict transition probabilities from the

https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1016/j.jtte.2019.09.005


Fig. 1 e Bridge classification based on superstructure material type as per NBI record (2017).
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condition data. The authors selected the most suitable

deterioration model for timber bridge elements based on

goodness-of-fit test. It has been concluded that the

deterioration prediction of timber bridge elements based on

the nonlinear optimization technique provides reasonable

accuracy. An alternative approach to bridge degradation

modeling has been proposed by Le and Andrews (2015) to

model the deterioration of railway bridge elements using

maintenance data. The deterioration process is modeled by

a Weibull distribution that governs the time that a

component deteriorates to a degraded condition state

following a repair. The authors have mentioned that the

rates for reaching different deteriorated conditions increase

significantly with time for timber decks and that the timber

deck is usually replaced once the material reaches a critical

point with severe defects. The major limitation of this

method is its dependence on significant amount of

maintenance data for modeling the bridge element

deterioration. An empirical method for predicting the

remaining lifespan of timber bridges has been suggested by

Abbott et al. (2019) using the Australian bridges' condition
data. The authors have mentioned that further research is

necessary to validate the accuracy of the model.

Bridge deterioration models can be broadly classified as

deterministic and stochastic models. There are mechanistic

models (or physical models) as well as Artificial Intelligence

(AI)-based models, each of which can be stochastic or deter-

ministic in nature.

2.1. Deterministic models

Deterministic models assume that tendency of bridge deteri-

oration process is certain and are based on regression analysis

of condition data. These models depend on an empirical

relationship between two or more variables that affect the

bridge conditionwith one dependent variable and one ormore

independent variables. Linear regression models do not pro-

vide enough accuracy for long-term performance of bridge

and may underestimate or overestimate the bridge condition

at a specific time unlike the non-linear regression models.

Previous researchers have found that a polynomial curve for

condition state as a function of age provides a good estimate
formost of the concrete bridges (Bolukbasi et al., 2004; Tolliver

and Lu, 2012). The following are the advantages and limita-

tions of deterministic models.

Advantages: i) simplest approach to predict the future

condition of bridges; and ii) practicality at the network level.

Limitations: i) neglects uncertainty due to the inherent

stochastic nature of infrastructure deterioration; ii) compu-

tationally expensive to update deterministic models when

new data is obtained; and iii) disregards the interaction be-

tween deterioration of different bridge components, such as

the bridge deck and deck joints.

2.2. Stochastic models

Stochastic models consider the bridge deterioration process

as one or more random variables (viz. time, condition state of

bridge elements) and hence can capture the uncertainty and

randomness of the deterioration process. Stochastic models

can be classified as either state-based or time-based models.

In state-based models, the deterioration process is

modeled through a probability of transition from one condi-

tion state to another in a discrete time interval. Markov chains

have been extensively used in state-based models given that

the deterioration process is dependent on a set of measurable

variables such as age, Annual Average Daily Traffic (AADT),

climate, material, etc.

In time-based models, the duration that a bridge element

remains at a particular condition state ismodeled as a random

variable using probability distributions, such as Weibull dis-

tribution, Gamma distribution, etc., to describe the deterio-

ration process (Kotze et al., 2015).

2.2.1. State-based models
Markov chain model is a state-based model which is based on

discretization of the condition of the bridge elements/systems

into a finite set of states and probabilities that the element or

system will jump from one condition state to the next state

within a unit time period. These probabilities are obtained

from either expert opinions or from a combination of expert

opinions and maintenance data when available (Betti, 2010).

Markov chain theory is based on two assumptions:

memoryless (i.e., the future states of the process depend

https://doi.org/10.1016/j.jtte.2019.09.005
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only on the current state) and homogeneous (i.e., the rates of

transition from one state to another remain constant

throughout the service life). For example, the Markov chain

for two states A and B can be represented as shown in Fig. 2

where the numbers represent the transition probabilities.

Cesare et al. (1992) described methods for utilizing Markov

chains in the evaluation of highway bridge deterioration. Two

methods that are frequently used for developing state-based

Transition Probability Matrix (TPM) are Percentage Prediction

Method (PPM) (Jiang and Sinha, 1989) and regression-based

optimization (Butt et al., 1987). Since the latter method is

affected significantly by any prior maintenance actions,

whose records may not be readily available in many Bridge

Management System (BMS) databases, the PPM is commonly

used (Morcous, 2011). The advantages and limitations of

Markov chain models are given below.

Advantages: i) Markov model provides a framework that

accounts for the uncertainty; ii) it is compatible with existing

qualitative/discrete bridge condition rating systems; and iii)

these models are simple to use and are very practical at the

network level.

Limitations: i) transition rates among condition states of a

bridge element are time independent (homogeneous) (Betti,

2010); ii) the Markov chain models only provide a qualitative

prediction of the future condition of the bridge element (e.g.,

excellent, good, fair, poor). The damage states are based on

qualitative condition ratings of bridge systems that are not

uniquely related to measurable physical quantities.

Qualitative models are inadequate for severely damaged

bridges for which safety may become an issue (Betti, 2010);

and iii) Markov chain model cannot be used to assess the

reliability of a structure in terms of strengths and stresses

(Frangopol et al., 2004).

2.2.2. Time-based models
In time-based models, probability distributions such as Wei-

bull distribution, Gamma distribution, etc., are used to

describe the deterioration process. In these models, the

duration that a bridge element remains at a particular con-

dition state is modeled as a random variable. Mishalani and

Madanat (2002) presented the development of a time-based

discrete-state stochastic duration model. Sobanjo (2011)

developed a semi-Markov model for Florida DOT, which

incorporates Markov-Weibull model. In this model, Weibull

survival function is used to model the probability of

remaining in condition state (CS) 1, as a function of age, and

Markov is used for remaining states. It was found that the

onset of deterioration is age-dependent and that a Weibull

survival probability model provided a relatively simple and

useful way of describing the effect of bridge age. Fig. 3

shows the Probability Distribution Function (PDF) for

different condition states for Cast In Place (CIP) concrete
Fig. 2 e Markov chain representation.
deck. The condition states 1, 2, 3, and 4 in Fig. 3 correspond

to NBI condition ratings 9, 8, 7 and 6, respectively. Ma�sovi�c

et al. (2015) presented an application of semi-Markov chain

process in bridge management.

The advantages and limitations of time-based models are

given below.

Advantages: i) Weibull models are found to be more real-

istic since the Weibull-based method utilizes actual scatter in

duration data for a particular condition rating and considers

this duration as a random variable (Agrawal et al., 2009); and

ii) time-based models have been used to obtain an age-

dependent probability of failure as an enhancement of the

Markov model (Thompson et al., 2012).

Limitations: i) interaction between different elements in

relation to the structural integrity is ignored (Ghodoosi et al.,

2014); ii) complexity in the estimation of distribution

parameters, especially in the lower condition states where

there is a lack of condition data; and iii) time-based models

are considered appropriate only if more than 20 years of

inspection data are available, otherwise state-based models

are considered more suitable (Mauch and Madanat, 2001).

2.3. Mechanistic models

Mechanistic models overcome the limitation of Markov chain

model in terms of capability to relate the qualitative mea-

surement of condition state to the quantitative physical pa-

rameters of the bridge such as material properties, stress

conditions, structural behavior, etc. These parameters are

critical data for assessing the structural capacity, and hence,

the reliability of the bridge. Estes and Frangopol (1999)

proposed a system reliability approach for optimizing the

lifetime repair strategy for highway bridges which involves

modeling the bridge as a series-parallel combination of

failure modes, and the reliability of the overall bridge system

is computed using time-dependent deterioration models.

Van Noortwijk and Frangopol (2004) compared two

maintenance models: condition-based and reliability-based

models. The former model is condition-based and treats

only one component, one failure mode and one uncertainty.

The latter model is reliability-based and treats the multi-

component, multi-failure mode and multi-uncertainty case.

Roelfstra et al. (2004) suggested an approach to model the

chloride-induced corrosion of steel reinforcement in which

results from the simulation were mapped to condition states

and Markov transition matrices were calibrated to fit the

simulation results. Morcous et al. (2010) illustrated an

example of a mechanistic model for reinforced concrete

bridge deck based on probabilistic corrosion initiation and

propagation model. Fig. 4(a) (shaded area between the

arrows) shows 86% probability of corrosion initiation at 40

years. Fig. 4(b) shows the cumulative probability of

percentage of remaining steel at different years. For

example, the probability of losing 30% of steel (i.e., 70%

remaining steel area) is estimated as 10% after 50 years,

about 25% after 60 years and 50% after 75 years. The

corrosion model was originally proposed by Tuutti (1982).

Zonta et al. (2007) presented a reliability-based bridge

management concept for Autonomous Province of Trento

(APT) in Italy. Ghodoosi et al. (2014) evaluated the system

https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1016/j.jtte.2019.09.005


Fig. 3 e PDF for duration of condition ratings for bridge CIP concrete deck (Sobanjo, 2011).
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reliability of existing conventional concrete bridge decks over

time. The authors have applied system reliability analysis to

simply supported concrete bridge superstructures designed

according to the Canadian Highway Bridge Design Code

(CHBDC-S6) and developed the deterioration pattern based

on the reliability estimates. A reliability analysis of existing

highway bridges in China based on SIE2011 was carried out

by Xie et al. (2014). The authors have applied Monte Carlo

sampling method to calculate the reliability indices of
Fig. 4 e Probabilistic corrosion initiation and propagationmodel.

Cumulative Distribution Function (CDF) of percentage of remaini
existing reinforced concrete simply supported T-beam

highway bridges and predict the probability of failure of the

existing highway bridges in each condition state and each

age. Barone and Frangopol (2014) proposed a multi-objective

optimization technique involving reliability, risk, hazard,

and cost. Recently, Zambon et al. (2019) presented a detailed

overview on carbonation-induced corrosion.

The following are the advantages and limitations of

mechanistic models.
(a) Cumulative probability of time to corrosion initiation. (b)

ng reinforcing steel at different times (Morcous et al., 2010).

https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1016/j.jtte.2019.09.005


Fig. 5 e Backward Prediction Model (Lee et al., 2008).
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Advantages: i) mechanistic models are suitable for project

level analysis; and ii) the models provide reliability based

quantitative deterioration prediction for bridge elements.

Limitations: i) this deterioration model is costly in terms of

data requirements and modeling and therefore, will be inef-

ficient for a large bridge network; and ii) these models cannot

be directly integrated into a BMS due to the high cost associ-

ated with data collection by available on-site inspection

techniques.
Fig. 6 e CBR cycle (Bergmann et al., 2009).
2.4. Artificial-Intelligence (AI) based models

AI-based models include expectation maximization (EM)

approach (Ma�sovi�c and Hajdin, 2014), Case-Based Reasoning

(CBR) (Morcous et al., 2002a), evolutionary algorithms like

genetic algorithms, shuffled frog leaping (Elbehairy et al.,

2006), and particle swarm optimization (Elbehairy, 2007). AI

based models also include Artificial Neural Network (ANN)

models like Back Propagation method with Multi-Layer

Perceptron classifier (BP-MLP) (Huang, 2010) and Backward

Prediction Model (BPM) (Lee et al., 2011).

Ma�sovi�c and Hajdin (2014) modeled the deterioration of

bridges elements of concrete girder bridges in Serbia based

on the Markov chain. The authors applied EM algorithm to

condition data from the Serbian bridge information database

to estimate the transition probabilities. It was highlighted

that the EM algorithm provided reasonable deterioration

model even if the inspection records were limited. Using an

ANN-based BPM, it is possible to generate artificial historical

bridge condition states (Lee et al., 2008; Son, 2010). Fig. 5

illustrates the BPM proposed by Lee et al. (2008). Bu et al.

(2015) developed an integrated model that incorporated both

time-based and state-based models with backward

prediction approach for long-term deterioration prediction

of bridge components. The state-based model was based on

Markov chain and Elman Neural Networks (ENN) to calculate

the transition probabilities and the time-based model was

based on Kaplan and Meier (K-M) estimate to calculate the

Probability Distribution Function of transition times.

CBR technique searches for previous cases where exam-

ples that are similar to the current problem are accessed from
the case library to solve the current problem (Morcous et al.,

2002b). Fig. 6 shows the CBR cycle originally proposed by

Bergmann et al. (2009).

Huang (2010) developed ANN based model to predict the

deterioration of concrete decks based on inspection records

for Wisconsin bridges. The study identified 11 significant

factors including age, design load, maintenance history,

length, ADT, deck area, environment, number of spans,

degree of skew, district and the previous condition to predict

the condition rating of the bridge decks. It was found that

the ANN model performs well when modeling deck

deterioration in terms of pattern classification. It was

claimed that the developed model had the capacity to

accurately predict the condition of bridge decks and

therefore provide pertinent information for maintenance

planning and decision making at both the project level (a

single bridge) and the network level (a group of bridges).

Artificial Neural Networks are computational models

inspired by biological neural networks and used to approxi-

mate the unknown functions. There are different ANN

https://doi.org/10.1016/j.jtte.2019.09.005
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models, of which, Multi-Layer Perceptron (MLP) is widely

used. MLP is a class of feedforward Artificial Neural Network.

It consists of at least three layers of nodes: an input layer, a

hidden layer and an output layer. Except for the input nodes,

each node is a neuron that uses a nonlinear activation func-

tion. MLP utilizes a supervised learning technique called Back

Propagation (BP) for training the neural network (Haykin, 2014;

Winn, 2011).

MLP is a highly interconnected network of many simple

linear or nonlinear processors (i.e., functions) distributed in

parallel (Fig. 7). The network can learn from experience and

then apply the knowledge to perform complex calculations

to find the values for missing data. Each processing unit

receives multiple inputs through weighted connections from

neurons in the previous layer. It performs appropriate

computations and transmits the output to other processing

units. The network performs operations by propagating

changes in activation (i.e., the state of a neuron which is

passed through the activation function) through the

weighted connections between the processors (Winn, 2011).

ANN obtains knowledge through training phase. In this

phase, the network is established using a set of training data.

During the learning phase, the system learns and identifies

the relationship between the input and output parameters.

The relationship is defined using the interconnection

strengths between nodes known as synaptic weights. The

weights are used to store the knowledge from the training.

Once the weights are known and the knowledge is stored, the

developed network can be used to solve the problems for an

unknown dataset (Hasan, 2015).

Neural network derives its computing power through its

massively parallel distributed structure and generalization.

Generalization refers to the neural network's production of

reasonable outputs for inputs not encountered during training

(learning). These two information processing capabilities

make it possible for neural networks to find good approximate

solutions to complex and large-scale problems that are

intractable (Haykin, 2014).

The following are the advantages and limitations of AI-

based models.
Fig. 7 e Multi-Layer Perceptron with t
Advantages: i) ANN-based technique can generate missing

condition state data to fill the gaps due to irregular in-

spections; and ii) CBR technique can be used to perform “what

if” analyses for different maintenance scenarios by changing

maintenance decisions and retrieving cases with similar de-

cisions based on available maintenance data.

Limitations: i) ANN is just an approach to artificially

generate missing data and it needs complementary tools to

utilize generated information for modeling bridge deteriora-

tion; and ii) the performance of the CBR approach depends on

the size of the case library and the adequacy of case descrip-

tion, correct setting of the attribute weights which is subjec-

tive and the availability of knowledge for case adaptation.
3. Current state-of-the-art on criteria for
remaining useful life of bridges

An asset is considered to have reached its life expectancy

when it is either physically deteriorated or can no longer

provide the intended service (Kumar et al., 2018). Expected

bridge life can be defined as the time until the bridge is

replaced or removed from service (Jeong et al., 2017). Taking

into account that the theoretical design life of bridges is

usually 50 years, a large proportion of the bridges in the

United States are considered deficient (Crevello et al., 2015).

Hence, it is critical for the highway agencies to estimate the

remaining service life of bridges to implement suitable

Maintenance, Repair and Rehabilitation (MR&R) measures at

the appropriate time. Preventive maintenance will generally

be more cost-effective than a reactive maintenance.

The life expectancy of bridges has been found to vary by

condition threshold and maintenance/preservation intensity.

The following are reported by Ford et al. (2011).

� Estes and Frangopol (1999) compiled bridge life expectancy

estimates based on data and expert opinions and found

that reinforced concrete decks survive between 24 and 48

years or 29e58 years if threshold NBI condition ratings of

4 and 3 are applied respectively; and reinforced concrete
wo hidden layers (Haykin, 2014).
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substructures survive 23e42 years (NBI rating 4 threshold)

and 27e50 years (NBI rating 3 threshold).

� In Indiana, concrete bridge deck life is approximated at 50

years (NBI rating 4 threshold) to 60 years (NBI rating 3

thresholds) (Jiang and Sinha, 1989). In Indiana, it was

further estimated that, assuming minor maintenance,

concrete and steel bridges would survive 50 and 65 years,

respectively (Gion et al., 1992). It was found that life can

vary between 35 and 80 years depending on the

maintenance/preservation activities performed (Cope,

2009; Sinha et al., 2009). For example, if a major repair

(e.g., bridge rehabilitation) is done every 20e25 years,

then a bridge life of 70e80 years can be expected in

Indiana (Sinha et al., 2005).

� In Massachusetts, a typical bridge life, excluding major

maintenance, of 60 years is reported (Massachusetts

Infrastructure Investment Coalition, 2005). Bridges were

predicted to last 90 years with a preservation activity at

year 35, or 110 years if rehabilitated at year 50

(Massachusetts Infrastructure Investment Coalition, 2005).

� In Florida, concrete decks were found to survive a

maximum of 146 years; reinforced concrete superstruc-

tures were found to survive 80 years (up to 335 years if

prestressed) (Thompson and Sobanjo, 2010).

� In Colorado, median bridge life has been estimated at 56

years (mean life is 76 years) with the deck component

surviving 19 years (Hearn and Xi, 2007).

� Bridges with less common designs may have different life

estimates. For example, in Chicago, bascule bridges were

found to have an estimated life of 75e100 years (Zhang

et al., 2008). Bridge decks with stainless steel

reinforcement can be expected to last for 75e120 years

(NX Infrastructure, 2008).

� International estimates of bridge life are generally similar.

In Sweden, bridges are predicted to survive 40e150 years

with a typical minimum of 50 years assumed (Hallberg,

2005). Dutch bridges are typically designed to survive

80e100 years (Van Noortwijk and Klatter, 2004). In

Canada, bridge decks have been found to survive 38e45

years (Morcous, 2006).

The following models have been applied to predict the

service life of bridges (Ford et al., 2011).

� Mechanistic methods based on corrosion (Ford et al., 2011).

� Linear and non-linear regression (Ford et al., 2011; Rodri-

guez et al., 2005).

� Markov chains (Ertekin et al., 2008; Estes and Frangopol,

1999; Ford et al., 2011; Hallberg, 2005; Jiang and Sinha, 1989;

Morcous, 2006; Zhang et al., 2003).

� Survival probability curves (Akgül and Frangopol, 2004;

Biondini et al., 2006; Estes and Frangopol, 2001; Ford

et al., 2011; Lin, 1997; Lounis, 2000; Oh et al., 2007; Saber

et al., 2006; Strauss et al., 2008).

� Ordered probit models (Ford et al., 2011; Rodriguez et al.,

2005).

� Neural networks (Ford et al., 2011; Narasinghe et al., 2006).

In general, bridge decks are predominantly studied among

other bridge components due to the fact that bridge decks are
directly exposed to harsh environment and traffic conditions.

Bridge deck life corresponds to one half of the overall bridge

life (Kumar et al., 2018). Caner et al. (2008) proposed a simple

method to estimate the remaining service life of a bridge

based on the relationship between its present condition

rating and its age by assessing a set of bridges at different

ages from which deterioration trend can be computed using

least squares fit. The authors suggested this method for the

agencies that either does not inspect their bridges

periodically or do not inspect them at all. For example,

Turkey performs bridge MR&R based on an as-needed basis

(Caner et al., 2008). In a case study, 28 bridges were

inspected for the first time to assess the average life

expectancy. The average life of a bridge was predicted to be

80 years.

A condition-based approach using visual inspection data

(e.g., NBI rating) is often used to forecast the bridge life ex-

pectancy. Based on the inspection data collected, deteriora-

tion models are generated. The deterioration models describe

the likelihood of the change of an element condition from one

condition to another over a given period. Themost commonly

used BMS is Pontis (now also known as AASTHOware Bridge

Management (BrM) Software), which uses Markov chain

deterioration modeling. According to Ford et al. (2011), bridge

engineers use these models and pre-defined thresholds in

order to estimate the time (in years) since the bridge

physical condition reaches a given threshold for

reconstruction or rehabilitation. In general, the NBI

condition rating of 4 is used by bridge engineers and

managers as the threshold for the rehabilitation and

replacement purposes (Kumar et al., 2018).
4. Examples of deterministic, stochastic and
ANN-based models

This section presents an illustration of bridge deterioration

models based on deterministic, stochastic and ANN-based

approaches. Examples 1 and 2 present timber bridge super-

structure deterioration models based on deterministic and

stochastic approaches respectively using NBI data. Only low

volume traffic bridges (i.e., Average Daily Traffic (ADT) lower

than 500) located in Florida, Georgia, South Carolina andNorth

Carolina are considered in these two examples. The analysis

considers only those bridges which have not undergone any

reconstruction during their service life. This paper assumes

that the maximum service life of timber bridges without

reconstruction is approximately 60 years, based on NBI re-

cords and published literature (Lokuge et al., 2017). Example 3

shows an illustration of ANN-based BP-MLP approach for

concrete bridge decks in Florida.

4.1. Example 1: Deterministic model

Fig. 8 shows the superstructure condition rating as a function

of age for timber highway girder type bridge data from NBI

records (1992e2012). Since the data is highly scattered, the

average condition rating is calculated for discrete ages of the

bridge superstructure. For example, corresponding to bridge

age 10, there are 106 records for condition rating of the

https://doi.org/10.1016/j.jtte.2019.09.005
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Fig. 8 e Polynomial regression curve for condition rating of timber bridge superstructure from unfiltered data.

Fig. 9 e Polynomial regression curve for average condition rating of timber bridge superstructure (with ADT ≤ 500) from

unfiltered data.

Table 3 e Condition rating considered for data filtering.

Age of the bridge (y) Condition rating
considered

0 9, 8

1 9, 8, 7

2 to 5 8, 7

6 to 20 8, 7, 6

21 and 22 7, 6

23 to 53 7, 6, 5

54 to 60 7, 6, 5, 4

Fig. 10 e Polynomial regression curve for average condition rat

filtered data.
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bridge superstructure. The average condition rating for these

records is calculated and obtained as 6.75. This procedure is

followed to obtain the average condition rating as a function

of age of the bridge as shown in Fig. 9.

In order to improve the accuracy of the polynomial

regression model in Fig. 9, condition data is filtered based on

Table 3 to reflect the practical scenario. The filtered dataset

is obtained by considering only those condition records

which lie within the range of mean ± 1 standard deviation.

Then, average condition rating vs. age is obtained as shown

in Fig. 10. The number of years from the current condition to

the period for initiating maintenance can be predicted using
ing of timber bridge superstructure (with ADT ≤ 500) from
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the deterioration curve shown in Fig. 10. For example, the

expected average condition rating at 10 years is obtained as

7.17. The number of years it takes for the superstructure

elements to deteriorate from condition rating of 7.17 to 6

(i.e., when the structural elements need major maintenance)

can be seen as 29 years.

4.2. Example 2: Stochastic model

State-based Markov chain model (a stochastic model) is

applied to obtain probabilistic deterioration model of timber

highway bridge superstructure. For example, NBI records from

2011 to 2012 are considered to obtain the Transition Proba-

bility Matrix (TPM) using Percentage Prediction Method (PPM).

The annual NBI inspection records are considered in devel-

oping the deterioration model.

The probability of the bridge condition changing from

one state to another is determined using expert judgment

and empirical observations, which are represented in a

matrix form. Table 4 shows the TPM for this Example 2.

Based on the current condition or initial condition state of

a bridge, the future condition can be predicted through the

matrix multiplication of the current condition vector and

the TPM.

4.2.1. Calculation basis for obtaining the elements in TPM
In PPM method, the probability pij is estimated using Eq. (1).

pij ¼
nij

ni
(1)

where nij is the number of bridges transitioned from state i to

state j within a given time period, ni is the total number of

bridges in state i before the transition.

For example, the probability of the bridge superstructure

which startedwith condition state (CS) 8 in 2011 and remained

in the same condition at the end of one year is calculated as

follows.

� Number of bridges in state 8 which remained in state 8

within a given time period (i.e., 2011e2012), n88 ¼ 19.

� Total number of bridges in state 8 in 2011, n8 ¼ 25.

� Therefore, the probability of bridge superstructure

remaining in the state 8 during the given period is calcu-

lated as shown in Eq. (2).
Table 4 e TPM for Markov chain-based deterioration
model for timber bridge superstructure.

CS 9 8 7 6 5 4

9 0.0000* 1.0000 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.7600 0.2400 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.9580 0.0420 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.9667 0.0333 0.0000

5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Note: “*” means the probability of network of bridges starting with

CS9 and remaining in the same state at the end of one inspection

period based on 2011e2012 NBI records is obtained as 0.0000. This

probability value could be different from zero if NBI records from

other years are considered.
p88 ¼n88

n8
¼ 19

25
¼ 0:76 (2)

� The probability that the bridge superstructure transitioned

from state 8 to state 7 is obtained as shown in Eq. (3).

p87 ¼1� p88 ¼ 1� 0:76 ¼ 0:24 (3)

In this way, all the other elements of the Transition Prob-

ability Matrix (P) are obtained.

4.2.2. Calculation basis for obtaining condition rating as a
function of age using Markov chain model
Expected value of bridge condition (E(t)) at transition period t

based on Markov chain is calculated using Eq. (4).

E(t) ¼ P(0)[Pt]TS (4)

where P(0) is the initial condition vector (i.e., (1, 0, 0, 0, 0, 0) for

a new bridge), [Pt]T is the transpose of TPM (P) at period t, and S

is the vector of condition states (9, 8, /, 4).

For example, the condition of the timber bridge super-

structure at 10 years is obtained as follows.

The initial condition for a new bridge is given by the initial

condition vector P(0) ¼ (1, 0, 0, 0, 0, 0). This means that the

bridge is 100% in CS9 and 0 in rest of the conditions states, i.e.,

CS8, /, CS7, CS4. The vector of condition states (S) remains

constant (9, 8, 7, 6, 5, 4). Then, the condition rating of the

bridge superstructure at time period t¼ 10 years is obtained by

using TPM (Table 4) and Eq. (4) as shown in Eq. (5).

Eð10Þ¼

0
BBBBBB@

1
0
0
0
0
0

1
CCCCCCA

�

2
6666664

2
6666664

0 1 0 0 0 0
0 0:76 0:24 0 0 0
0 0 0:958 0:042 0 0
0 0 0 0:9667 0:0333 0
0 0 0 0 1 0
0 0 0 0 0 1

3
7777775

103
7777775

T

�ð9; 8; 7; 6; 5; 4Þ¼ 6:87 (5)

Similarly, the expected value of condition rating at any

discrete time period can be obtained based on the initial

condition and the TPM.

Thus, a probabilistic model using state-based Markov

chain approach is obtained (Fig. 11). The number of years

from the current condition to the period for initiating

maintenance can be predicted using the deterioration

curve shown in Fig. 11. For example, the expected average

condition rating at 10 years is obtained as 6.87. The

number of years it takes for the superstructure elements to

deteriorate from condition rating of 6.87 to 6 (i.e., when the

structural elements need major maintenance) can be seen

to be 24 years.

Chi-square goodness of fit test is performed to compare the

prediction accuracy of deterministic and stochastic models,

and the results are shown below.

https://doi.org/10.1016/j.jtte.2019.09.005
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Fig. 11 e Markov chain-based deterioration model for timber bridge superstructure.
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A chi-square goodness of fit test is performed to

compare the performance of deterministic model and

Markov chain-based stochastic model. NBI records for the

year 2014 are considered for the purpose of testing the

models. Both the models (i.e., deterministic and stochastic)

have a chi-square value lesser than the critical chi-square

value of 78 obtained for a level of significance of 5% and

degrees of freedom of 59. The chi-square value for deter-

ministic model is obtained as 2 whereas the value for sto-

chastic model is 4.5. This shows that, based on the data

considered for the analysis, the deterministic model gives

better prediction when compared to the stochastic model.

This is because the authors have considered only one set of

inspection records (2011e2012) to obtain the stochastic

model for illustration purposes only. However, in reality,

the TPM should be developed based on the average of

probabilities obtained for all the years from 1992 to 2012.

Hence a number of transition probability matrices have to

be developed for every set of inspection records (i.e.,

1992e1993, 1993e1994, /, 2011e2012), and the average

probability values should be used to obtain the deteriora-

tion curve using Markov chain. The model developed using
Fig. 12 e Flowchart of ANN-based m
average of transition probabilities obtained from the data

for the period 1992e2012 will improve the prediction ac-

curacy of stochastic model.

4.3. Example 3: ANN-based model

Thisexample illustrates theBackPropagationbasedMulti-Layer

Perceptron (BP-MLP) approach to generate missing condition

data, which could be used for developing deterioration curve

through regression analysis (or other methods) for both project

level and network level analyses of bridge element condition.

Conditiondata forbridgedecksof solidslabbridges inFloridaare

used for illustration. The data is obtained fromNBI database for

the years 1992e2012. The different steps involved in developing

ANNmodel are represented in the flowchart (Fig. 12).

The following steps are performed to develop ANN-based

deterioration model.

Step 1. Dataset preparation

This step is performed to obtain training dataset which is

fed into the input layer of the MLP. In this step, duplicates and
odel for finding missing data.

https://doi.org/10.1016/j.jtte.2019.09.005
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incomplete data are removed. The resulting data obtained is

skewed with respect to available data points for each condi-

tion rating. Hence, oversampling of the least populated con-

dition rating is performed (Simpson, 2015).

Totally 9398 bridge records from 1992 to 2012 are consid-

ered from NBI database after removing duplicates and

incomplete data (Fig. 13). These records are further filtered by

removing the outliers and oversampling the least represented

condition ratings like 9, 5 and 4, to reflect the practical

scenario. Finally, 8837 records are fed into the neural

network for training and testing purposes as shown in Fig. 14.

Step 2. Choice of input features

Seaborn heatmap is used to decide on the choice of input

features. Seaborn is a Python data visualization library based

on matplotlib. It provides a high-level interface for drawing

attractive and informative statistical graphics. The best thing

about the heatmap is that it can show the Pearson correlation

coefficient for each featurewith respect to every other feature.

The ANN model is built after selecting the features. The

filtering is done using correlation matrix and it is most

commonly done using Pearson correlation.

The correlation coefficient has values between �1 and 1.

i) A value closer to 0 implies weaker correlation (exact

0 implying no correlation).

ii) A value closer to 1 implies stronger positive correlation.
Fig. 13 e Deck condition rating v

Fig. 14 e Deck condition rating vs. age for Flo
iii) A value closer to�1 implies strongernegative correlation.

Fig. 15 shows the heatmap for selected input variables like

age, Average Daily Traffic (ADT), structure length, design load,

skew angle, number of spans, maximum span length,

roadway width and deck width. It is found that skew angle

and structure length have minimum correlation with respect

to deck condition. Variables having Pearson correlation

coefficient greater than 0.1 (highlighted as blue boxes in

Fig. 15) with respect to deck condition are chosen as input

features for building the ANN-based model. As expected, age

has a strong negative correlation of 0.78 with deck condition

implying that the deck condition degrades as a function of

age.

Step 3. Development of neural network

The neural network in this example is a multiclass classi-

fication Multi-Layer Perceptron using Back Propagation

approach (BP-MLP) (Fig. 16). The chosen input variables for the

input layer include age, ADT, design load, number of spans,

maximum span length, roadway width and deck width.

Using historical bridge maintenance data of reinforced

concrete bridge decks in Florida, a neural network consisting

of seven inputs in input layer, five hidden layers each

containing 64 nodes and one output layer containing 6 labels

(for ratings 9 to 4) is developed. Keras, an open-source

neural network library written in Python, is utilized for
s. age for Florida RC bridges.

rida RC bridges (data for neural network).
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Fig. 15 e Heatmap for feature selection.
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developing the model. The condition ratings are converted

into a class vector 0 to 5 and is further converted into a

binary class matrix using the Keras function to_categorical.

Finally, the efficient Adam gradient descent optimization

algorithm with a logarithmic loss function

(categorical_crossentropy loss) is used to train the model.
Fig. 16 e Schematic diagram of M
Step 4. Training, testing and refining the parameters of neural

network

The data is normalized and split into 80e20 ratio for

training and testing respectively. After training for an arbi-

trary number of epochs, the testing set accuracy is calculated.
LP with single hidden layer.
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Hyperparameter tuning (i.e., adjusting the variable parame-

ters of the network like number of nodes, epochs, layers, etc.)

is performed and the optimal configuration for the network is

obtained by trial and error. The final network has 5 hidden

layers, using scaled exponential linear unit (SELU) and recti-

fied linear unit (RELU) activation functions for the first two

hidden layers respectively and the hyperbolic tangent acti-

vation function for the remaining hidden layers. The output

layer uses Softmax function. Softmax function, also called

normalized exponential function, is a function that takes as

input a vector of K real numbers and normalizes it into a

probability distribution consisting of K probabilities. The data

is trained for 100 epochs of batch size two. After training, the

training set accuracy and testing set accuracy are found to be

91% and 88% respectively.

Step 5. Making predictions for missing data and development

of deterioration curve

The model developed is used to predict missing condition

ratings during different time periods for 3 bridge decks which

have limited inspection records. The already available data

and the predicted data for the missing years are plotted

together and linear regression is performed to obtain the

deterioration curve for the bridge deck.

The deck condition ratings are predicted for the missing

years and also the NBI data for the available years are checked
Fig. 17 e Available and predicted deck c

Fig. 18 e NBI data and ANN predi
with the predicted values from the ANN model, for three

sample reinforced concrete bridges in FloridaeBridge #110002,

#260103 and #790155.

4.3.1. ANN-based deterioration curve for bridge deck for
Bridge #110002
Bridge #110002 was built in 1956. Since the NBI condition re-

cords are available only from 1992, there are missing condi-

tion ratings until the first documented inspection record. The

available NBI dataset is left censored and condition ratings are

predicted for years 1e35 with two-year time interval. Fig. 17

shows the available and predicted deck condition ratings for

Bridge #110002.

The condition ratings from ANN prediction model is

checked with respect to available NBI data. In this partic-

ular bridge case, except for two data points, the predicted

values show agreement with the NBI data. Fig. 18 shows

the NBI data and the ANN generated data for the

available years.

Fig. 19 shows the deterioration curve developed for the

bridge deck with only available NBI data. It is evident that

there is no information on the deterioration during the years

1e23 due to missing inspection data.

Fig. 20 shows the deterioration curve developed using both

available NBI data and the ANN predicted condition data for

the missing years. This curve gives a better estimate of deck

condition for all the years until around 60 years.
ondition ratings for Bridge #110002.

cted data for Bridge #110002.
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Fig. 19 e Deterioration curve for bridge deck with available data (Bridge #110002).

Fig. 20 e Deterioration curve for bridge deck with available and predicted data (Bridge#110002).

Fig. 21 e Available and predicted deck condition ratings for Bridge #260103.

J. Traffic Transp. Eng. (Engl. Ed.) 2020; 7 (2): 152e173 167
4.3.2. ANN-based deterioration curve for bridge deck for
Bridge #260103
Bridge #260103 was built in the year 2000. In this case, only

limited condition records are available from NBI for deck

condition. Fig. 21 shows the available and predicted deck

condition ratings for Bridge #260103.

The condition ratings from ANN prediction model is

checked with respect to available NBI data. In this case, all the

predicted condition ratings show agreement with the NBI

data. Fig. 22 shows the NBI data and the ANN generated data

for the available years.

Fig. 23 shows the deterioration curve developed for the

bridge deck with only available NBI data. It is seen that there
is no information on the deterioration after 15 years of age

due to missing inspection data.

Fig. 24 shows the deterioration curve developed using

both available NBI data and the ANN predicted condition

data for the missing years. This curve gives a better

estimate of deck condition for all the years until around 65

years.

4.3.3. ANN-based deterioration curve for bridge deck for
Bridge #790155
Bridge #790155 was also built in the year 2000. The available

NBI dataset is right censored and condition ratings are pre-

dicted from 15 years of age with two-year time interval. Fig. 25

https://doi.org/10.1016/j.jtte.2019.09.005
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Fig. 22 e NBI data and ANN predicted data for Bridge #260103.

Fig. 23 e Deterioration curve for bridge deck with available

data (Bridge #260103).
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shows the available and predicted deck condition ratings for

Bridge #790155.

The condition ratings from ANN prediction model is

checked with respect to available NBI data. In this particular

case, only three data points show agreement with the NBI

data. This is due to faster deterioration rate of this particular

bridge when compared to the other bridges. Fig. 26 shows the

NBI data and the ANN generated data for the available years.

Fig. 27 shows the deterioration curve developed for the

bridge deck with only available NBI data. It is evident that

there is no information on the deterioration after 14 years.
Fig. 24 e Deterioration curve for bridge deck with
Fig. 28 shows the deterioration curve developed using both

available NBI data and the ANN predicted condition data for

the missing years. This curve gives a better estimate of deck

condition for all the years until around 65 years.

The above illustrated examples show the method to

generate missing condition ratings for bridge elements for

project level analysis. Similar procedure could be adopted to

generate missing data for the analysis of a network of bridges.
5. Summary and conclusions

This paper presents a review of literature on deterioration

modeling of bridges and the models are applied to some case

studies of timber superstructure and concrete bridge decks.

Current BMS uses Markov chain-based deterioration models

for network level analysis and prioritization of bridges for

maintenance activities. Several studies have been carried out

by earlier researchers on improving deterioration models to

obtain realistic bridge performance. Deterministic models are

quick and easy to obtain based on regression analysis. How-

ever, it may not be very close to reality as infrastructure

deterioration process is a random one. Stochastic processes

are of two major types: state-based and time-based. State-

based process is generally modeled using Markov chain and

time-based process using probability distributions like Wei-

bull, Gamma, etc. Markov chain-based models are very suit-

able for network-level analysis. However, they suffer from
available and predicted data (Bridge #260103).
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Fig. 25 e Available and predicted deck condition ratings for Bridge #790155.

Fig. 26 e NBI data and ANN predicted data for Bridge #790155.

Fig. 27 e Deterioration curve for bridge deck with available

data (Bridge#790155).
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limitation of being memoryless and homogeneous. Time-

based models utilize probability distributions such as Weibull

distribution, Gamma distribution, etc., considering time as a

random variable, to describe the deterioration process, how-

ever, it requires enormous amount of data to obtain reason-

able prediction. Mechanistic models are used for project level

analysis, but it requires a lot of computation time and data,

which makes it nearly impossible to integrate it with current

BMS for regularmaintenance activities. AI-basedmodels have

great potential to overcome some of the above limitations of
the other models. However, it is still in the nascent stage of

development for its use in BMS.

Two examples are illustrated to show the application of a

deterministic model and stochastic Markov chain model

based on timber highway bridge data from NBI. It is observed

from the illustrated examples that deterministic model pro-

vides higher accuracy than stochastic Markov chain-based

model to predict the deterioration of timber bridge super-

structure. However, if themodel is developed using average of

transition probabilities obtained for the years 1992e2012, the

average transition probabilities will improve the prediction

accuracy of the stochastic model. It is also evident that proper

data filtering of condition records aids in improving accuracy

of the deterministic models. The third example is on ANN-

based models for reinforced concrete bridge decks in Florida.

BP-MLP is used to predict missing condition data. In the

illustrated ANN model, the training set accuracy and testing

set accuracy are found to be 91% and 88% respectively. The

trained model is utilized to generate missing condition state

data to fill the gaps due to irregular inspections.
6. Recommendations for future research

There is scope for future research in bridge deterioration

modeling which includes but not limited to the following

aspects.
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Fig. 28 e Deterioration curve for bridge deck with available and predicted data (Bridge #790155)
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i) Quantitative deterioration modeling which considers

the physical parameters like stresses, deflections, in

addition to the condition data from visual inspection.

ii) Development of non-homogeneous Markov chain-

based deterioration model.

iii) Improved AI-based models for prediction of bridge

element deterioration.

iv) Computation of the remaining useful life of bridges

using system reliability.

v) Application of Geographical Information System (GIS)

for bridge deterioration modeling.

iv) Development of deterioration models for timber rail-

road bridges.

The above suggestions may improve the existing tech-

niques to provide more robust and accurate prediction of

bridge deterioration process, thereby aiding in the efficient

use of resources in bridge management.
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