Intersection signal control multi-objective optimization based on genetic algorithm
-
-
Abstract
A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM), and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.
-
-